Translation of the original instructions

Your Advantages

- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60255-1, IEC/EN 60947-1
- To: Monitor DC and AC
- Measuring ranges from 2 mA to 25 A
- Optionally with 3 measuring ranges 0.1 up to 25 A
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between auxiliary circuit - measuring ciruit
- Auxiliary supply AC and AC/DC
- Optionally with start-up delay
- With time delay, up to max. 100 sec
- Optionally with safe separation to IEC/EN 61140 (on request)
- As option with manual reset
- Option with fixed settings possible
- LED indicators for operation and contact position
- Width: 45 mm

Approvals and Markings

${ }^{1)}$ Approval not for all variants

Applications

- Monitoring current in AC or DC systems
- For industrial and railway applications

Function

The relays measure the arithmetic mean value of the rectified measuring current. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overcurrent relays but can also be used for undercurrent detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. It disables tripping e.g. caused by an increased starting current of a motor. The response delay t_{v} is active after exceeding a response value. On overcurrent relays the delay is active when the current goes over the tripping value, on undercurrent relays when the current drops below the hysteresis value.

Indicators

Green LED:
On, when auxiliary supply connected
Yellow LED:
On, when output relay acitvated

Function Diagram without Start-up Delay

Function Diagram with Start-up Delay

On model BA 9053/6_ _ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data				
Input (i, k)				
BA 9053 for AC and DC				
Measuring range ${ }^{1)}$		RM (internal measuring resistor (shunt)	Max. perm. cont. current	
AC	DC		Device mounted without distance	$\begin{aligned} & \text { current 3 s On, } \\ & 100 \text { s Off } \end{aligned}$
2-20mA	1.8-18 mA	1.5Ω	0.7 A	1 A
20-200 mA	18-180 mA	0.15Ω	2 A	4 A
30-300 mA	27-270 mA	$0.1 \quad \Omega$	2.5 A	8 A
50-500 mA	45-450 mA	0.1Ω	2.5 A	8 A
80-800 mA	72-720 mA	$40 \mathrm{~m} \Omega$	4 A	12 A
0.1- 1 A	0.09- 0.9 A	$30 \mathrm{~m} \Omega$	4 A	12 A
0.5- 5 A	0.45-4.5 A	$6 \mathrm{~m} \Omega$	10 A	30 A
1-10 A	0.9-9 A	$3 \mathrm{~m} \Omega$	20 A	40 A
1.5-15 A	1.35-13.5 A	$3 \mathrm{~m} \Omega$	25 A	40 A
2-20 A	1.8-18 A	$3 \mathrm{~m} \Omega$	25 A	40 A
2.5-25 A	2.25-22.5 A	$3 \mathrm{~m} \Omega$	25 A	40 A
1) DC or AC current $50 \ldots 5000 \mathrm{~Hz}$ (other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{2}{3} \mathrm{~Hz}$ on request)				

BA 9053/4_-		with 3 measuring ranges:	
Range:	Terminals i1/k	Terminals i2/k	Terminals i3/k
AC $20 \mathrm{~mA} /$			
$200 \mathrm{~mA} / 1 \mathrm{~A}:$	AC $2.0 \ldots 20 \mathrm{~mA}$	AC $20 \ldots 200 \mathrm{~mA}$	AC $0.1 \ldots 1 \mathrm{~A}$
	DC $1.8 \ldots 18 \mathrm{~mA}$	DC $18 \ldots 180 \mathrm{~mA}$	DC $0.09 \ldots 0.9 \mathrm{~A}$
AC $1 / 5 / 10 \mathrm{~A}:$	AC $0.1 \ldots 1 \mathrm{~A}$	AC $0.5 \ldots 5 \mathrm{~A}$	AC $1.0 \ldots 10 \mathrm{~A}$
	DC $0.09 \ldots 0.9 \mathrm{~A}$	DC $0.45 \ldots 4.5 \mathrm{~A}$	DC $0.9 \ldots 9 \mathrm{~A}$
AC $5 / 10 / 25 \mathrm{~A}:$	AC $0.5 \ldots 5 \mathrm{~A}$	AC $1.0 \ldots 10 \mathrm{~A}$	AC $2.5 \ldots 25 \mathrm{~A}$
	DC $0.45 \ldots 4.5 \mathrm{~A}$	DC $0.9 \ldots 9 \mathrm{~A}$	DC $2.25 \ldots 22.5 \mathrm{~A}$

Extending of measuring range:

Measuring principle:
 Adjustment:

Temperature influence:

For DC currents exceeding the largest measuring range, the measuring range $15 \ldots 150 \mathrm{mV}$ or $6 \ldots 60 \mathrm{mV}$ of the BA 9054 and MK 9054N can be used with external shunt
For AC current exceeding the largest measuring range a current transformer can be used. For Example with secondary winding of 1 A or 5 A . The nominal load of the CT should be $\geq 0.5 \mathrm{VA}$. Arithmetic mean value
The AC-devices can also monitor DC current. The scale offset in this case is: ($\bar{I}=0.90 I_{\text {eff }}$) < 0.05 \% / K

Technical Data

Setting Ranges

Setting

Response value: Infinite variable $0.1 \mathrm{I}_{\mathrm{N}} \ldots 1 \mathrm{I}_{\mathrm{N}}$
Hysteresis
At AC:
At DC:
Accuracy:
Response value at
Potentiometer right stop (max): $0 \ldots+8 \%$
Potentiometer left stop (min): - $10 \ldots+8 \%$
Repeat accuracy
(constant parameter): $\leq \pm 0.5 \%$
Recovery time
At devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9053/6

Time delay t_{v} :

Start-up delay t_{a} :
BA 9053/1 _ _:
$\underline{\text { Auxiliary voltage } \mathrm{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)}$

Nominal voltage	Voltage range	Frequency range
$\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}$	$\mathrm{AC} 18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	$\mathrm{DC} 18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
$\mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}$	$\mathrm{AC} 40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	$\mathrm{DC} 40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$

Nominal voltage	Voltage range	Frequency range
DC 12 V	DC $10 \ldots 18 \mathrm{~V}$	Batteriespannung

Nominal consumption:
4 VA ; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

BA 9053 Auxiliary voltage $\mathrm{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)$ for mono voltages

Nominal voltage:	AC 24, 42, 110, 127, 230, 400 V
Voltage range:	$0.8 \ldots 1.1 U_{H}$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Frequency range:	± 5 \%
Nominal consumption:	2.5 VA
Output	
Contacts:	2 changeover contacts
Thermal current $\mathrm{I}_{\text {th }}$:	2×5 A
Switching capacity	
NO contact:	$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60947-5-1
NC contact:	1 A / AC 230 V IEC/EN 60947-5-1
to DC 13:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60947-5-1
Electrical life	
at $3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V} \cos \varphi=1$:	2×10^{5} switching cycles
Short-circuit strength max. fuse rating:	6 A gG / gL IEC/EN 60947-5-1
Mechanical life:	30×10^{6} switching cycles

Technical Data

General Data

Operating mode: Temperature range
Operation:

$\leq 10 \mathrm{~A}:$	$-40 \ldots+60^{\circ} \mathrm{C}$
$\geq 15 \mathrm{~A}:$	$-40 \ldots+50^{\circ} \mathrm{C}$

Storage:
Altitude:
Clearance and creepage distances
Rated impulse voltage /
pollution degree
Measuring range $\leq 10 \mathrm{~A}$:

Aux. voltage / measuring input:	6 kV / 2
Auxiliary voltage / contacts:	$6 \mathrm{kV} / 2$
Measuring input / contacts:	$6 \mathrm{kV} / 2$
Contacts 11,12,14 / 21, 22, 24 :	$4 \mathrm{kV} / 2$
Measuring range $\geq 15 \mathrm{~A}$:	$4 \mathrm{kV} / 2$
EMC	
Electrostatic discharge:	8 kV (air)
HF irradiation	
$80 \mathrm{MHz} . . .1 \mathrm{GHz}$:	$20 \mathrm{~V} / \mathrm{m}$
1 GHz ... 2.7 GHz :	$10 \mathrm{~V} / \mathrm{m}$
Fast transients:	4 kV

Fast transients:
Surge voltages
Between
wires for power supply:
Between wire and ground
HF wire guided:

Interference suppression:
4 kV
10 V
Limit value class B
EC/EN 61000-4-5
IEC/EN 61000-4-5
IEC/EN 61000-4-6

IP 40	IEC/EN 60529
IP 20	IEC/EN 60529

Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm IEC/EN 60068-2-6 frequency $10 \ldots 55 \mathrm{~Hz}$

Climate resistance
$\leq 10 \mathrm{~A}$:
≥ 15 A:
Terminal designation:
Wire connection:
Wire fixing:
Stripping length:
Fixing torque:
Mounting:
Weight
AC-device:
AC/DC-device:

Degree of protection

 Housing:erminals:
Housing:
Vibration resistance:

Dimensions
(higher temperature with limitations on request)
Continuous operation
$-40 \ldots+70^{\circ} \mathrm{C}$
≤ 2000 m

Classification to DIN EN 50155 for BA 9053

Vibration and shock resistance:
Ambient temperature:

Category 1, Class B
IEC/EN 61373
OT1, OT2 compliant
OT3 and OT4 with operational limitations
Protective coating of the PCB: No

UL-Data

Auxiliary voltage $\mathbf{U}_{\mathrm{H}}(\mathbf{A} 1, \mathrm{~A} 2): \quad \mathrm{AC} 120 \mathrm{~V}$
Thermal current $I_{t h}$: $2 \times 5 \mathrm{~A}$
Clearance and
creepage distances:
HF irradiation
(80 MHz ... 2.7 GHz)
Switching capacity:
Ambient temperature:
4 kV / 2
EC 60664-1
IEC/EN 61000-4-3

IEC 60664-1
EC 60664-1
IEC 60664-1
IEC 60664-1 IEC 60664-1

IEC/EN 61000-4-2
IEC/EN 61000-4-3
IEC/EN 61000-4-3
IEC/EN 61000-4-4

Technical data that is not stated in the UL-Data, can be found in the technical data section.

CCC-Data

Thermal current I_{th} : 5 A
Switching capacity

to AC 15:	$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1
to DC 13:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$	IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Type	
BA 9053/010 AC 1.5 .. 15 A	AC/DC 80 ... 230 V
Article number:	0057178
- For Overcurrent monitoring	
- Measuring range:	AC 1.5 ... 15 A
- Auxiliary voltage U_{H} :	AC/DC 80 ... 230 V
- Time delay by I_{an} :	$0 \ldots 20 \mathrm{~s}$
- Width:	45 mm
BA 9053/012 AC 1.5 .. 15 A	AC/DC 80 ... 230 V
Article number:	0061256
- For Undercurrent monitoring	
- Measuring range:	AC 1.5 .. 15 A
- Auxiliary voltage U_{H} :	AC/DC 80 ... 230 V
- Time delay by I_{ab} :	$0 \ldots 20 \mathrm{~s}$
- Width:	45 mm

Ordering Example for Variants

 Time delay t_{v}
Auxiliary voltage
Measuring range

With UL-approval

10 Overcurrent relay energized on trip time delay at setting value
11 Overcurrent relay de-energized on trip time delay at setting value
12 Undercurrent relay de-energized on trip time delay at hysteresis value 13 Undercurrent relay energized on trip time delay at hysteresis value

0 Standard version
With start up delay t_{a}
130 Overcurrent relay energized on trip time delay at setting value with start up delay t_{a} safe separation up to 10 A
2 With safe electrical separation of input- and output circuit accroding to DIN 61140 (on requ.)
Meas. range up to $\leq 10 \mathrm{~A}$: DIN EN 60947-1; 4 kV/2 in relation of overvoltage category III with basic insulation to DIN EN 60664-1 of 4 kV ; Meas. range up to $\geq 15 \mathrm{~A}$: overvoltage category II with basic insulation of 2.5 kV
4 With 3 current ranges $1 \mathrm{C} / \mathrm{O}$ contact
431 With 3 current ranges $1 \mathrm{C} / \mathrm{O}$ contact, with safe separation up to 10 A
6 With manual reset, resetting by disconnecting the power supply

Setting

Example:
Current relay AC 0.5 ... 5 A
AC according to type plate:
i.e. the unit is calibrated for AC
$0.5 \ldots 5 \mathrm{~A}=$ measuring range

Response value AC 3 A
Hysteresis AC 1.5 A

Settings

Upper potentiometer: $\quad 0.6(0.6 \times 5 \mathrm{~A}=3 \mathrm{~A})$
Lower potentiometer: $\quad 0.5(0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})$
The AC - devices can also monitor DC current. The scale offset in this case is: $\bar{I}=0.90 \times I_{\text {eff }}$

AC $0.5 \ldots 5 \mathrm{~A}$ is equivalent to $\mathrm{DC} 0.45 \ldots 4.5 \mathrm{~A}$
Response value DC 3 A
Hysteresis DC 1.5 A
Settings
Upper potentiometer: $\quad 0.66 \quad(0.66 \times 4.5 \mathrm{~A}=3 \mathrm{~A})$
Lower potentiometer: $\quad 0.5 \quad(0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})$

Characteristic

Time delay of measuring circuit
X on: Measured value rise

X off: Measured value drops $F=\frac{\text { Mesaured value (befor measured value drops) }}{\text { Setting value (hysteresis) }}$
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter.
The total reaction time of the device results from the adjustable delay t_{v} and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overcurrent detection with BA9053/010):
Adjusted setting value X on $=2 \mathrm{~A}$.
Due to a stalled motor the current rises suddenly to 10 A .
$F=\frac{\text { Measured value (after rise of measured value) }}{\text { Setting value }}=\frac{10 \mathrm{~A}}{2 \mathrm{~A}}=5$
Reading from the diagram:
The output relay switches on after 31 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

Example for "X off" (undercurrent detection with BA9053/012):

Adjusted hysteresis setting value is 10 A .
The current drops suddenly from 23 A to 0 A.
$F=\frac{\text { Mesaured value (befor measured value drops) }}{\text { Setting value (hysteresis) }}=\frac{23 \mathrm{~A}}{10 \mathrm{~A}}=2.3$
Reading from the diagram:
The output relay switches off after 70 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

